

UPSTATE Nieman Disclosures

- None of the funding organizations or sponsors had any role in the design and conduct of any of our studies including: the collection, management, analysis, or interpretation of the data; or preparation, review, or approval of any of our manuscripts.
- Consultant for Interxon Corporation
- Consultant for the DoD developing Mechanical Ventilators for Marine Mammals
- NIH R01 grant: Gene therapy to treat acute lung injury using
- Travel and honorarium funded by Dräger Medical
- Dräger Medical equipment used in our studies
- · CDMRP DoD grant: A novel drug (TRB-N0224) to reduce ARDS incidence
- Established a APRV Network website
- Conduct an APRV Workshop Sponsored by Upstate Medical University
- Patent for: "Method of preventing acute lung injury"
- Patent for: "Novel method of assessing alveolar inflation in ARDS using sound"
 Patent for: "A device (MIST) to remove toxic ascites and prevent MODS and ARDS
- · Patent for: "Apparatus, system and method of assessing alveolar inflation"

How do we 'Trick' the ARDS Lung into Ventilating and Oxygenating without Exacerbating Tissue Injury?

- Understanding the science of ARDS pathophysiology
- Combine this understanding with the *science* of VILI in terms of applied stress and resultant strain on lung tissue

UPSTATE

"Physiology is the basis of medical reasoning, not statistics. Statistics are a tool"

Luciano Gattinoni

UPSTATE

How do we 'Trick' the ARDS Lung into Ventilating and Oxygenating without Exacerbating Tissue Injury?

- Understanding the science of ARDS pathophysiology
- Combine this understanding with the *science* of VILI in terms of applied stress and resultant strain on lung tissue

How do we 'Trick' the ARDS Lung into Ventilating and Oxygenating without Exacerbating Tissue Injury?

- Understanding the *science* of ARDS pathophysiology
- Combine this understanding with the *science* of VILI in terms of applied stress and resultant strain on lung tissue

UPSTATE

Mechanism of VILI at the Alveolar Level

- Dynamic alveolar strain (R/D)
 - Tetrad: Edema/Surfactant deactivation
- Stress-Concentration (S-C)
 - Tetrad: Edema/Surfactant deactivation
- Over-distension
 - In the presence of R/D or S-C adjacent alveoli and ducts can over-distend

UPSTATE

Mechanism of VILI at the Alveolar Level

- Dynamic alveolar strain (R/D)
 - Tetrad: Edema/Surfactant deactivation
- Stress-Concentration (S-C)
 - Tetrad: Edema/Surfactant deactivation
- Over-distension
 - In the presence of R/D or S-C adjacent alveoli and ducts can over-distend

 	-

What happens to this homogeneous ventilation when alveoli become unstable with Acute Lung Injury?

Mechanism of VILI at the Alveolar Level

- Dynamic alveolar strain (R/D)
 - Tetrad: Edema/Surfactant deactivation
- Stress-Concentration (S-C)
 - Tetrad: Edema/Surfactant deactivation
- Over-distension
 - In the presence of R/D or S-C adjacent alveoli can over-distend

Wechanism of VILI at the Alveolar Level Dynamic alveolar strain (R/D) Tetrad: Edema/Surfactant deactivation Stress-Concentration (S-C) Tetrad: Edema/Surfactant deactivation Over-distension

- In the presence of R/D or S-C adjacent

alveoli can over-distend

 -	-

How must the Mechanical Breath be Adjusted to Minimize the Problems caused by ARDS Pathophysiology: • Maintain homogeneous alveolar ventilation – (Open the lung: prevent stress-concentration) • Prevent alveolar collapse at expiration – (Keep the lung open: prevent dynamic strain)	"Open the Lung and Keep the Lung Open" B. Lachmann Intensive Care Med 1992	We Create the Problem and then Attempt to Devise Solutions for the Problem that We have Created! • Wouldn't it make more sense to prevent the problem in the first place? • The problem is Heterogeneous Loss of Lung Volume - Causing high inspiratory drive with the potential of SB-induced VILI - Causing stress-risers and alveolar instability - Causing over-distension of 'Baby Lung' - If the lung is open, VILI disappears, no problem to fix!

What is the Current Ventilation Strategy to Open the Lung and Keep it Open?

- Recruitment maneuvers
- Open the lung
- PEEP
- Keep the lung open
- Reduced Vt and Pplat
 - Minimize alveolar over-distension in the presence of dynamic strain and stress-concentrators

Why haven't these strategies worked?

UPSTATE

Understanding **Dynamic** Alveolar Physiology

- Alveoli are <u>not</u> elastic in nature
- Do not inflate and deflate in a linear fashion like a balloon
- Rather, alveoli are a viscoelastic system
- <u>Time lag</u> from when the force (i.e. Vt) is applied or removed and when the alveolus begins to change volume
- Dynamic alveolar inflation and deflation can be modeled as a: *Spring and Dashpot*

	DC	T	דא	"E
U.	נ ו	17	VI	98

How can we use this knowledge of dynamic alveolar physiology to design a better protective ventilation strategy?

UPSTATE

Protective Mechanical Ventilation: The Old and the New

- Old thinking: RM+PEEP+LVt
- RM: Reduce stress-concentrators (S-C)
- **PEEP**: Reduce dynamic alveolar strain (R/D)
- -LVt: Minimize OD of 'Baby Lung'
- New Thinking: Spring and Dashpot
 - -Long I-time: Reduce stress-concentrators (S-C)
 - Short E-time: Reduce dynamic alveolar strain

UPSTATE

Extend the <u>Duration</u> at Inspiration

Continually recruit alveoli with each breath: Reduce S-C

What Mechanical Breath Strategies use Inspiratory and Expiratory Duration to Protect Alveoli? •HFOV •Inverse I:E •APRV

UPSTATE Summary

- Mechanism of VILI in the Microenvironment
 - Alveolar stress-concentrators
 - Dynamic alveolar strain
 - Alveolar over-distension
 - · Secondary to S-C and dynamic strain
- Dynamic Alveolar Physiology
- Viscoelastic alveolar volume change
- Components of the Mechanical Breath that will Protect the Lung
 - Extended Inspiratory duration
 - Short Expiratory duration

Conclusion

- Properly set APRV acts like a splint to protect the lung with altered physiology keeping it open until the lung has a chance to 'heal'.
- If we 'Open the Lung and Keep it Open' or better yet, 'Never Give the Lung a Chance to Collapse' all of the mechanisms associated with VILI will be significantly reduced or eliminated.

