GERIATRIC TRAUMA:
OLD DOG
NEW TRICKS

Ron D. Robertson, MD FACS
Professor of Surgery
Director of Trauma, Critical Care, and
Acute Care Surgery
UAMS

Geriatric Trauma:
An emerging public health issue

- Geriatric population – Age 65 and older?
 - “Geriatric” depends on what you read...
 - Range 55 – 70 years old
 - Relates to Minor, Moderate, Severe Trauma

- Elderly • 10% general population but 25% trauma admissions

- Account for 1/3rd trauma expenditures
 - 9 billion dollars per year for geriatric trauma in the U.S.

Geriatric Trauma:
An emerging public health issue

- Geriatric Generalities:
 - For each 1 year beyond 65, risks of dying after GT ↑ 7%
 - Overall mortality GT age > 65yo – 7 to 10%
 - Risk of death are 34% less – female
 - GT is 4th leading cause of death
Total number of persons 65 or older, by age group, 1900 to 2050, in millions

2050: 90 million people = age 65 and will represent 1/6 of the US population. Currently, 25% of all trauma admissions, 2050 projected to be 40%.

The Gray Tsunami!!!
Geriatric trauma patients behave differently

- Geriatric trauma patients behave differently than their younger counterparts
- "Normal" appearing vitals signs mask their physiologic derangement
 - "Occult Hypoperfusion"
- With a similar traumatic insult, GT higher risk of death/suffer more injury severity than younger patients

Geriatric Trauma

- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Unique Mechanisms and Patterns of Injury

Physiologic Reserve

- Defined As:
 - Individual's Ability To Tolerate Injury

- Function Of Unique Host Factors:
 - Age
 - Gender
 - Preexisting Disease
 - Immuno-competence
Physiologic Reserve

- Diminished response to hypovolemia:
 - Cardiac Index decreases 1% per year
 - Maximal heart rate is reduced with advancing age
 - Effect of adrenergic stimulation reduced

- Geriatric trauma patients have:
 - Lower cardiac index
 - Lower oxygen delivery
 - Lower oxygen consumption

- Suffer worse outcomes from hypoperfusion

Host Factors Define Physiologic Reserve

![Graph showing physiologic reserve affected by age, underlying disease, and host factors.]

Physiologic Reserve
Injury Severity Determines Slope

![Graph showing physiologic reserve affected by injury severity and pre-existing conditions.]

Young & Healthy
Age
Underlying Disease
Host Factors

Physiologic Reserve
Pre-existing Conditions
High ISS
Moderate ISS
Physiologic Exhaustion
Death

Time
Geriatric Trauma

- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Unique Mechanisms and Patterns of Injury

Decline in Function with Age

- Brain mass
- Eye disease
- Discrimination of colors
- Respiratory vital capacity
- Renal function
 - 2- to 3-inch loss in height
 - Impaired blood flow to lower leg(s)
- Degeneration of the joints
- Total body water
 - Nerve damage (peripheral neuropathy)
- Stroke
- Diminished hearing
- Sense of smell and taste
- Saliva production
- Esophageal activity
- Cardiac stroke volume and rate
- Heart disease and high blood pressure
- Kidney disease
- Gastric secretions
- Number of body cells
- Elasticity of skin, thinning of epidermis
- 15 – 30% body fat

Aging Impact on Function

- Decreased vision and hearing
- Slower reflexes
- Poorer balance
- Impaired motor/cognitive function
- Decreased muscle mass/strength
- Decreased bone density
- Less joint flexibility
- Impaired sensation – especially pain
Geriatric Trauma

- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Unique Mechanisms and Patterns of Injury

Triage of the Geriatric Patient

- “Onsite” treatment

- Undertriage:
 - Rate – 40 to 70% (Young – 15 to 20%)
 - Age > 65 is independent risk factor for undertriage

- Best Outcomes when GT Level 1 Center; however:
 - “Normal” field vital signs:
 - lead to transfer to lower level centers
 - incorrect triage at the trauma center
Is advanced age a triage criterion for trauma center referral and activation?

- Chang et al. 2008: 10 year retrospective review
 - 25,565 patients
 - Risk of undertriage in age ≥ 65 was significantly greater
 - 49.9% vs. 17.8%
 - Multivariate analysis
 - controlling for year, sex, physiology, injury, mechanism, EMS provider level training, presence or absence of specific injuries
 - Age ≥ 65 is an independent risk factor for under-triage

Age as a criteria for activation?

Demetriades et al.

- Standard physiological/anatomic triage criteria FAILED to identify severely injured GT
 - Failed to meet hemodynamic activation criteria
 - 63% of severely injured (ISS>15)
 - 23% of those critically injures (ISS>30)
 - Conclusion: Age 70yo or older should be a criteria for trauma team activation

- Follow-up study – Mortality/Disability

Geriatric Trauma Patients: Care in Designated vs. Non-designated Trauma Centers

- Elderly patients treated at Level I Trauma Center
 - Lower preventable adverse events/lower risk-adjusted mortality
 - If treated by dedicated surgeon-intensivists
 - Mortality 25%
 - Study of severely injured 80yo TC survival 56% v. 8% NTC
 - Survey of Current Practice - Maxwell, Miller et al.:
 - 43% of elderly admitted to non-designated trauma centers.
 - Non trauma centers are admitting highest percentages:
 - Older age groups/co-morbidities
 - Falls
 - Femoral neck fractures
 - Major OR procedures

Geriatric Trauma

- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Unique Mechanisms and Patterns of Injury

How do Geriatric trauma patients behave differently?

- Heffernan et al.: *“Normal” presenting vital signs are unreliable*
 - Positive shock index: HR > 100 and SBP < 90 mmHg
 - For GT: HR > 90 or a SBP < 110 mmHg
 - Indicative of under-resuscitation

- Studies suggest that geriatric patients suffer “occult hypoperfusion”
- Rate of OH ranges 16-30%
- In fact, 42% of patients with OH had normal vital signs

- Outcomes: Occult hypoperfusion = frank shock
 - Longer than 52 hours, mortality 32 – 35%
 - OH leads to 2 fold risk of mortality

- Identifying patients with OH – mission critical
 - Physical examination/vital signs don’t work

Identifying occult hypoperfusion
“2 Schools of Thought”

All geriatric trauma patients receive the highest level activation

- Full trauma resuscitation team comprised: attending trauma surgeon, an attending emergency medicine physician, resident physicians in teaching institutions, and multiple dedicated nurses and technicians.

Lactate/base deficit identified as risk stratification tool

Physiologic Reserve

Physiologic/Anatomic Changes

Triage/Activation of GT

Occult Hypoperfusion

Pre-existing Conditions (PECs)

Treatment of GT

Unique Mechanisms and Patterns of Injury

Geriatric Trauma

~80% GT patients have at least 1 PEC, 50% ≥ 2

Most Common:
- HTN – >50% of GT
- Hepatic – worst (RD 5x) – (Impact EARLY)
- Heart – >30%, RD 3.4x (Impact LATE)
- Pulmonary – COPD, RD 3x
- Diabetes – RD 1.2x
- Renal Disease (RD 3x)
- Cancer (RD 2x)
- Stroke
- Dementia
- Arthritis

Co-morbidities or Pre-existing Conditions (PECs)
Co-morbidities/PECs

Important to remember:

- PEC’s often initiating event for trauma
- Poor pre-injury function = poor outcome
- PECs substantially increase complications
- Mortality increases as number of PECs increase
 - Most prevalent with low/moderate trauma

Is advanced age a triage criterion for trauma center referral and activation?

- Doom & Gloom!
- A "large proportion" of elderly patients return to independent living
- And therefore:
 - Age alone should not be used as the sole criterion for limiting care!

Geriatric Trauma

- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Unique Mechanisms and Patterns of Injury

References:
Primary Survey

- Adults/pediatrics/pregnant/elderly – priorities are all the same!

 A Airway with C-spine protection
 B Breathing
 C Circulation with hemorrhage control
 D Disability
 E Exposure/Environment

History – “AMPLE”

- Meds that affect initial evaluation/care
 - Anticoagulants
 - Beta blockers
 - 20% of patients with CAD, 10% of patients with HTN

- Consider acute, non-traumatic events led to injury
 - Acute coronary syndrome
 - Hypovolemia/dehydration
 - UTI
 - Pneumonia
 - Acute renal failure
 - Cerebrovascular events
 - Syncope

- Labs
 - CBC, lytes, BUN/creatinine – all done as rapidly as possible – i-stat
 - ROTEM or TEG – thromboelastography
 - ABG/VEG - determination of base deficit or lactate (serial test)
 - Type/Cross

Airway

- Inspect oral cavity
 - Poorly fitting, loose dental appliances
 - Bag-valve mask difficult with edentulous airway

- When in doubt - INTUBATE, especially with
 - Shock
 - Chest trauma
 - Mental status changes

- Beware
 - Loss of kyphotic curve
 - Spinal canal stenosis
 - Decrease cervical spine mobility
Breathing
- Myriad of effects on pulmonary function
- Osteoporosis
 - ↓ rib durability
 - ↑ incidence rib/sternal fxs
 - Pulmonary contusion even low energy trauma
- Weak respiratory muscles/age related changes
 - ↓ chest wall compliance
 - ↓ pulmonary function- VC, FRC, I/E force
- Blunted response hypoxia, hypercarbia, acidosis
- Limited ability to compensate

Circulation/Resuscitation
- IV, O2, monitor
- “Normal” BP = frank hypotension
 - Shock and Occult hypoperfusion (OH) predicts mortality
- Judicious fluids, blood and blood products early
- Lactate/Base Deficit ASAP
 - Important in triage and resuscitation
 - Correlates with systemic hypoperfusion and shock
- Early angiographic embolization
 - Complex pelvic fractures
 - Splenic, liver, kidney lacerations

Use of Base Deficit/Lactate in evaluating resuscitation in Geriatric Trauma
- Base deficit values of -6 mEq/L or worse
 - marker of severe injury/significant mortality in all trauma patients but especially in the elderly:
 - Base deficit -5 mEq/L or higher → less than 25% mortality
 - Base deficit -6 mEq/L or worse → 60% mortality
- Lactate > 2.5 is considered severe
 - Independent predictor of severe injury/mortality
 - 2.6 times vs. risk of mortality
 - Better predictor of hypoperfusion/outcome than vital signs
 - Correlates with:
 - Total oxygen debt/degree of hypoperfusion/severity of shock
Disability/Exposure

- Risk for hypothermia and pressure sores
 - Poor nutrition
 - Loss of lean muscle mass
 - Microvascular changes
 - Blunted hypothalamic function
- Rectal temperature and rewarming methods
 - Bair hugger/warm blankets
 - Increase ambient temperature
 - Level 1 infuser
- Decrease hypothermic-induced coagulopathy
 - Deadly Triad
- Off back board, clear cervical collar, spine ASAP

Diagnostic Imaging

- CXR- standard yet fails ID 50% rib fractures
- Pelvis X-ray- rules out major pelvic fractures
- CT scan
 - Primary mode evaluation in elderly
 - Low threshold
 - Radiation exposure not important issue
- Contrast-induced nephropathy risk factors:
 - CRI, DM, dehydration, CHF, Age > 75
 - Cr 4 or less – IV contrast ok

Geriatric Trauma

- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Unique Mechanisms and Patterns of Injury
Falls

- Most common mechanism of injury
 - 75% of all geriatric trauma
 - 90% ground level
- 5-10x more EMS calls due to Falls than MVCs
- 30% 65yo and older fall each year
 - 6% result in fracture
 - 10-30% multiple injuries
 - Leading cause non-fatal injuries in GT
- Overall Fall Mortality: 7%
- Each fall costs ~ $18,000 per episode

Ground Level Falls (GLF)

- Retrospective review NTDB
- 32,320 elderly GLF (>70 y/o)
- Mortality 4.4%
- GCS <15 significantly predicts mortality
- GT patients – 5x ↑ risk dying from GLF than younger population

NTDB = National Trauma Data Bank
Spaniolas, J. Trauma 2010; 69:821-825

- NTDB database study – 589,830 patients
- Geriatric: 183,209 (31%)
- Nongeriatric: 406,621 (69%)
- Presentation Vital Signs - Geriatric Trauma
 - Lower heart rate
 - Higher systolic blood pressure
 - Less often hypotensive
 - Presented more often GCS < 9
 - Higher Overall Crude Mortality: 4.6% v 1.9%
Geriatric Physiology

- GT more likely:
 - HTN, cardiac disease, cerebrovascular disease, CRF
- Overall, GT more likely presented with:
 - Lower HR/higher SBP
- GT more likely to be hypotensive:
 - after MVC, pedestrian vs auto, assault, MCC
 - Impact of falls
- Overall, GT presents with:
 - Lower ISS (Injury Severity Score)
 - But more often suffered severe TBI/LE fractures

Falls

- Most common mechanism of injury 55% vs 29%
- Mortality: 4.4% vs 1.9%
- Injury Pattern:
 - 31% - lower extremity fracture
 - 23% - TBI
 - 23% - hip fracture
- More likely than younger to suffer:
 - TBI
 - UE/LE fractures
 - Rib fractures
 - Hip fractures/Pelvic fractures

Motor Vehicle Collisions

- 21,145 (15%) vs 119,618 (85%)
- GT more often hypotensive (4.5% vs 3.1%)
- GT mortality higher (5.6% vs 1.9%)
- Injury Pattern:
 - 43% - thoracic injury
 - 41% rib fractures
 - 22% - spine fracture
 - 18% - TBI
Pedestrian v Auto

- 5552 (14%) v 35,185 (86%)
- GT more often hypotensive (5.5% v 4.6%)
- GT mortality higher (7.8% v 3.3%)
- Injury Patterns
 - 35% - lower extremity fractures
 - 29% - thoracic injuries
 - 24% - TBI
- GT more likely to suffer:
 - Pelvic fracture/Hip fracture
 - Lower extremity fracture

Most Important...

- Age > 65 independently associated with mortality across ALL mechanisms of injury

Cervical Spine Injuries

- Cervical stenosis/degenerative spine disease
 - Fractures involve more than 1 level
 - Often clinically unstable
 - C1/C2 fractures are common
 - GLF tend to produce high C-spine injury
 - C-spine injury is twice more frequent than young pts
- Predictors of C-spine Injury:
 - Focal neurologic deficits
 - Concomitant head injury
 - High energy mechanism
Rib Fractures

- Bulger et al- 277 patients over 65 with rib fractures
- Mortality: 1-3: 11% 4-6: 14% >6: 31%
- EACH rib fx ↑ risk pneumonia 27% and mortality 19%
- Rib fracture(s) are an indication for admission
- Triage to Floor/ICU • Incentive Spirometry
- Pain management essential • morbidity/mortality
 • Epidural
 • PCA, Rib catheters/blocks, Lidocaine patches
 • Good pulmonary toilet
 • Rib fixation when indicated

Abdominal Injury

- Doesn’t differ significantly from younger pts
- FAST – still mainstay for early diagnosis
- Over age 55 – more likely to fail non-operative management of solid organ injury
 - Stable patient – reasonable to attempt nonop mngmt.
 - BUT, any instability should warrant exploration/IR
 - 17 GT nonop management – 3 failed; 2/3 died
 - BUT, presence of “arterial blush” on initial CT should warrant urgent exploration or IR intervention
 - Attempt at non-operative management warrants an ICU admission

Pelvic Fractures

- Most common after fall
- Lateral compression fractures (Unique)
 - Pubic rami /Acetabulum /Ischium
 - > 50% multiple fx’s
- Increased hemorrhage: 3x more likely to get blood
 - Binder / Transfusion /Angio-embolization
 - ICU admission
 - Surgical intervention is about timing!
- Look for other fracture/other injuries
 - Hip ➔ wrist/shoulder fractures
 - Pelvic fx w/long bone fractures are associated with occult bleeding
Traumatic Brain Injury (TBI)

- Early diagnosis/treatment critical to outcome
- >65 yo 2-5x mortality of younger groups
- Linear relationship: Age and Mortality
- Overall mortality TBI with ICH: 30-85%
- Brain weight decreases by 10% between ages 30-70
 - Cerebral atrophy → Increase intracranial space
 - Mask ongoing bleed, subtle presentations, delay dx
 - Liberal early use of CT
 - Subdural hematoma common – tearing of bridging veins
 - Larger, more midline shift, mortality rate 4x greater
 - Epidurals are rare – dura adheres to skull

Traumatic Brain Injury

Study of Mild Head Trauma (GCS 13 – 15)

- 14% had evidence of head injury on CT
- 20% of those → neurosurgical intervention
- NO CLINICAL PREDICTORS
 - Couldn’t distinguish (+) CT and those (-) CT
- Recommendations:
 - CT all GT with signs of head injury/altered GCS
 - Serial neurologic examination

TBI and Anticoagulants

- Dramatically ↑ morbidity/mortality with elderly TBI

- Antiplatelet Agents
 - No good reversal strategies for anti-platelet agents
 - Prasugrel/Effient, clopidogrel/Plavix = ADP Inhibitors
 - P2Y12 Level
 - Platelet activation = ADP + P2Y12 receptor
 - Plavix/Effient = block P2Y12 receptor
 - Result: less than 194 PRU means receptor blockade
 - Platelet Activation Function
 - Other anti-platelet agents
 - Platelet transfusion, desmopressin (DDAVP) and rFVIIa MAY offset some bleeding
Coumadin
- ~15% of Geriatric pts taking it (65% cardiac)
- Independent predictor mortality TBI – 10x ↑
- Remove TBI – not associated worse outcomes
- Reversal
 - FFP – issues: volume required (10ml/kg)/frozen
 - VIIa have increased risk of transfusion related ALI
 - VIIa – cost, indication and short DofA (2 hours)
 - PCC – Prothrombin Concentrate Complex (Kcentra)
 - Factors IX, X, II, (VII) ~ 25x ↑ concentration plasma
 - 1/2 Life ~ 20 hours; cost 1/10th of VIIa
 - Low risk of thrombotic events - < 2%
 - Dosing: based upon INR/ROTEM

How should coagulation-based coagulopathy be treated?
- Level 1: Insufficient CLASS I and CLASS II data
- Level 2: Insufficient CLASS I and CLASS II data
- Level 3:
 1. Patients on AC: coagulation profile on admission
 2. Suspected head injury: immediate CT of the head
 3. Patients on Warfarin with ICB
 correction of coagulopathy to < 1.6x normal within 2hrs

Direct Factor Inhibitors
- Dabigatran (Pradaxa)
 - Direct thrombin inhibitor
 - Idarucizumab (Praxbind) – reversal agent ($3500.00)
- Rivaroxaban/Apixaban /Edoxaban
 - Direct Xa inhibitors
 - Andexanet alfa (AndexXa) – recombinant gene
 - Investigational studies on dialysis/PCC
 - In doubt – give PCC
- TEG/ROTEM useful to ID presence of these drugs and platelet inhibitors
Severe TBI Outcomes

BUT:

Elderly patients with severe traumatic brain injury
- GCS ≤ 8 for at least 72 hours (off sedation)
- At least 80% mortality or long term placement disposition
- Justifies discussion of goals of care

Complications/Infections

- GT complication rate: 33%
- Preventable complications
 - Contribute to 30% of all GT deaths
- Other complications:
 - Pre-existing conditions
 - Age-related physiologic changes
- Infection risk ~ 40%
 - Nosocomial infections
 - COPD independent predictor of infection

Direct transport of geriatric trauma patients with pelvic fractures to a Level I trauma center within an organized trauma system: impact of two-week incidence of in-hospital complications.

- 87 GT patients with unstable pelvic fractures
 - 39% (34/87) transported to nontertiary trauma centers (NTC)
 - 61% (43/87) transported to a Level I center
- Adjusting for comorbidity and ISS
- 2 week incidence of complications 54% higher in NTC
- Complications:
 - Pneumonia/Sepsis/Myocardial infarction
- Majority of complications occurred within 7 days

Garwe et al; American Journal of Surgery (2012) 204, 921-26
Global Management Principles

- Treat individual, not just the injuries
- Align team resources
- Avoid AGEISM—stereotyping older patients
- Emphasize respect/sense of individual
- Recovery highly individualized process
- Understand unique capacities and limitations
- Preserve as much independence and dignity as possible

Pain Management Strategies

- Effective pain management central determinant of success in drive to improve:
 - Pulmonary function/Mobility/Mitigate delirium
- Use elderly-appropriate meds and doses
- Avoid benzodiazepines
- Monitor use narcotics
- Epidural analgesia with multiple rib fractures
- Consider non-narcotics
 - NSAIDS
 - Tramadol

Multi-disciplinary Treatment Plan

- Early mobilization/ambulation
 - Within 24-48 hours
- Assess fall risk
- Aspiration precautions
 - Elevate HOB at all time with repositioning
 - Sit upright while eating and 2 hrs after
 - Evaluate for swallowing deficits
- Chest PT-IS/deep breathing exercises
- Early enteral nutrition
- Pain control
- Bowel regimen, especially with opiate use
- Screen for presence of pressure ulcers
- Assessment of cognition/sleep disturbances
Geriatric Trauma Service: A one year experience

- G-60 Geriatric Trauma Unit in Level II
- Worked on collaboration
 - Medical hospitalist
 - Physiatrist
 - PT/OT/RT
 - Nursing supervisor with geriatric experience
 - Palliative care specialist
- Compared before/after G-60 - 280pts/393pts
 - Decreased time to OR
 - Decreased ICU and hospital LOS
 - Decreased complications
 - Decreased mortality rate

Mangram et al, J. Trauma 2012;72:119-122

EAST PMG: Conclusions

1. Elderly trauma patients should be treated at centers that have resources and have attained excellence in care.

2. In patients with ICB and Warfarin-induced coagulopathy, coagulation profile should be immediately assessed.

3. Base deficit of -6 mEq/L should be used as a marker for severe injury and admission to ICU should be considered.

4. Glasgow Coma Score of ≤ 8, which remains low after 72 hrs warrants discussion regarding goals of care.
Geriatric Trauma
- Physiologic Reserve
- Physiologic/Anatomic Changes
- Triage/Activation of GT
- Unique Mechanisms of GT
- Occult Hypoperfusion
- Pre-existing Conditions (PECs)
- Treatment of GT
- Prevention

Future Directions
- Risk Stratification – 65 ≠ 65 ≠ 65
- Frailty Index – 18 different ones
- Prognosis Calculators
 - PALLIATE = Prognostic Assessment of Life and Limitations After Trauma in the Elderly consortium
 - Geriatric Trauma Outcome Score (GTOS)
 - As reliable as TRISS (Trauma Injury Severity Score)
 - \[\text{GTOS} = \text{Age} + (2.5 \times \text{ISS}) + (22 \times \text{PRBC}) \]
 - PRBC: Yes = 1, No = 0

Summary
- Elderly (≥65) fastest growing age group
- Majority of trauma admissions over next 20 years
- GT patients behave differently
- Age, Injury Severity, PEC’s all indep. predict death
- Limited physiologic reserve
- Ground level falls are NOT benign
- Consider triage to designated trauma centers
- Do not rely on “normal” vital signs
- Pulse > 90, SBP< 110 = SHOCK
- Measure base deficit/lactate
Summary
- Low threshold for CT scan
- Rapid Head CT and correction of coagulopathy
- GCS ≤ 8 associated with poor outcome
- Create multi-disciplinary team
- Reduce complications and improve outcomes
- GT patients CAN return to productive lifestyle