Solid Organ Injury

Tessa Woods, DO

Outline
- Brain
- Lung
- Heart
- Liver
- Kidney
- Adrenal glands
- Duodenum/Pancreas
- Spleen

Brain

Triage
- GCS
 - Most valuable piece of information
 - 3-4 = poor outcome regardless of CT
 - Some don’t even perform CT in these patients
 - 5 = indeterminate category
 - 6 = most would be aggressive in treatment
- Poor prognostic factors
 - Self-inlicted injury
 - Bilaterally fixed and dilated pupils
 - Confusion
 - Bullet passage across midline
 - Through the ventricle
 - Across more than one lobe of the brain

Introduction
- Definition
 - Disruption or alteration of brain structure or function caused by external mechanical forces
 - Transient or permanent
 - Mild TBI
 - may have no evidence of radiologic abnormality
 - More than 50,000 die annually from TBI
 - Annual burden in the US - $76 billion
Types of Injury

Classification and Management
- **Primary vs Secondary Injury**
 - **Primary** - occurring from forces imparted at the time of the accident
 - **Secondary** - occurring subsequent to impact

Primary
- Focal disruption of tissue (contusions/hematoma)

Secondary
- Hypoxemia, ischemia, hypoglycemia
- One brief period hypoxemia/hypotension - devastating in injured brain

Diffuse Axonal Injury

- **Caused by**
 - Rotational/mechanical forces
 - Acceleration/deceleration injury

- **Grading**
 - Grades 1-5 based on MRI
 - Severity:
 - **Mild**
 - Axonal stretching
 - Transient neuronal dysfunction
 - **Severe**
 - Cellular events leading to impairment of axoplasmic transport
 - Axonal disconnection at the site of impairment

Concussion

- **Mildest form of traumatic brain injury**
- **Usually transient**
- **Normal imaging**
 - **MRI abnormal** - 25%

- **Symptoms**
 - Headache, irritability, confusion, amnesia, nausea, vomiting, memory problems, etc.

- **Grading systems not recommended**
 - No correlation with outcome/treatment/duration of symptoms

Abusive head trauma

- **Original injury triad in children**
 - Long bone metaphyseal fx
 - Sdh
 - Retinal hemorrhage

- **Shaking**
 - May lead to diffuse sdh
 - Epidural - accidental

- **Retinal hemorrhage in 65-95% with inflicted injuries, unilateral or bilateral**

- **Mortality**: 15-38%
 - 60% if patient is comatose on presentation

- **Survivors**
 - 60-70% - neurologic handicap
Focal Injuries

- **Epidural Hematoma**
 - Between dura and inner skull
 - Temporal bone fx that lacerates middle meningeal artery
 - Classic (rare)
 - Brief loss of consciousness
 - Lucid interval
 - Obliteration
 - Contralateral hemiparesis
 - Isolated pupillary dilation

- **Subarachnoid hemorrhage**
 - Occurs between pial and arachnoid membranes
 - Traumatic
 - Results from venous tears in subarachnoid space

- **Subdural hematomas**
 - Blood between arachnoid and inner dural layers of the meninges
 - Technically “intradural” hematoma
 - Traumatic stretching and tearing of cortical bridging veins

- **Intracerebral hematoma and contusion**
 - May expand rapidly
 - OR if
 - Volume exceeds 50 cm³
 - GCS 6-8 with frontal or temporal contusions greater than 20 cm³ in volume with midline shift greater than or equal to 5 mm
 - Cisternal compression on CT

- **Mortality**
 - Unilateral: 5-12%
 - Bilateral 25%

- **OR if**
 - EDH greater than 30 cm³ in volume regardless of GCS, shift 5 mm
 - Neuropathological features
 - Maximal hematoma thickness greater than 1 cm

New England Journal of Medicine
Management

<table>
<thead>
<tr>
<th>Initial goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normothermia, euvolemia</td>
</tr>
<tr>
<td>NS, avoid dextrose</td>
</tr>
<tr>
<td>Prophylaxis for ulcers</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
<tr>
<td>HOB 30 degrees</td>
</tr>
<tr>
<td>Check collar for fit</td>
</tr>
<tr>
<td>Frequent neuro checks</td>
</tr>
<tr>
<td>Hbg - used to be 10, failed to be substantiated, now many use 7</td>
</tr>
<tr>
<td>Some recommend 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood pressure and oxygenation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single episode hypoxemia (PaO2 less than 60)</td>
</tr>
<tr>
<td>or hypotension (sbp less than 90)</td>
</tr>
<tr>
<td>- Decreased risk of mortality</td>
</tr>
<tr>
<td>- TQIP 75% with both</td>
</tr>
<tr>
<td>- Similar risk hypothermia</td>
</tr>
<tr>
<td>- Etoprine oxygen administration</td>
</tr>
<tr>
<td>- TBF - maintain sbp at 100 for 50-60 years, greater than 110 for all else</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC - Baseline nutrition higher</td>
</tr>
<tr>
<td>- 120-130% even when sedated and paralyzed</td>
</tr>
</tbody>
</table>

Nutrition Guidelines

<table>
<thead>
<tr>
<th>Initiate if within 24-48 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regardless of route</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brain Trauma Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective study</td>
</tr>
<tr>
<td>- Amount of early enteral nutrition</td>
</tr>
<tr>
<td>- Dose risk of death</td>
</tr>
<tr>
<td>- 80-90% decrease in morbidity for every 10 kcal/kg increase in energy intake, achieving a plateau at 25 kcal/kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maybe arginine containing immune-modulating formulations or epha/dha supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1 small trial of 40 patients</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizures</td>
</tr>
<tr>
<td>- Early - first 7 days, late after 7 days</td>
</tr>
<tr>
<td>- Increases ICP</td>
</tr>
<tr>
<td>- Increases metabolic demand</td>
</tr>
<tr>
<td>- Increased risk: gcs below 10, depressed skull fx, cortical contusions or intracranial hemorrhage, penetrating injury or seizures within 24 hours of brain injury</td>
</tr>
<tr>
<td>- Only shown to be helpful in first 8 days of injury</td>
</tr>
<tr>
<td>- Keppra - not really proven in studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>- do not use prophylaxis for late seizures</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>DVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBF</td>
</tr>
<tr>
<td>54% incidence dvt without prophylactic treatment</td>
</tr>
<tr>
<td>25% if in SCDF</td>
</tr>
</tbody>
</table>

| Unclear guidelines on resuming prophylaxis |
| TQIP/ACS |

<table>
<thead>
<tr>
<th>Elevate within 72 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 72 hours appears safe in patients at low risk for progression and head stable</td>
</tr>
<tr>
<td>Consider IVC filter if high risk</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Blood pressure and oxygenation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single episode hypoxemia (PaO2 less than 60)</td>
</tr>
<tr>
<td>or hypotension (sbp less than 90)</td>
</tr>
<tr>
<td>- Decreased risk of mortality</td>
</tr>
<tr>
<td>- TQIP 75% with both</td>
</tr>
<tr>
<td>- Similar risk hypothermia</td>
</tr>
<tr>
<td>- Etoprine oxygen administration</td>
</tr>
<tr>
<td>- TBF - maintain sbp at 100 for 50-60 years, greater than 110 for all else</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC - Baseline nutrition higher</td>
</tr>
<tr>
<td>- 120-130% even when sedated and paralyzed</td>
</tr>
</tbody>
</table>

Elevated ICP - TQIP/ACS

<table>
<thead>
<tr>
<th>3-Tiered Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to treat ICP on one Tier - move forward</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hgb 90</td>
</tr>
<tr>
<td>- Sedation analgesia (propofol, fentanyl, versed)</td>
</tr>
<tr>
<td>- Ventricular drainage intermittent, continuous only if drain reading poorly</td>
</tr>
<tr>
<td>- Repeat CT head</td>
</tr>
</tbody>
</table>
Elevated ICP - TQIP/ACS

- Tier 2
 - EVD
 - Hypervolemic therapy intermittent
 - Mannitol
 - Hypertonic saline (hold if na over 160)
 - PaCO2 30-35 mmHg
 - Repeat CT imaging
 - Neuromuscular paralysis

- Tier 3
 - Decompressive hemi-craniectomy
 - Neuromuscular paralysis
 - Maintain 2 twitches with the train of four
 - Barbiturate or propofol coma
 - Hyperthermia not currently recommended - rescue only

Lung

- Lung lacerations
 - Symptoms
 - Large air leaks
 - Hemoptysis
 - Dx
 - Bronchoscopy
 - Careful control of airway - double lumen tube, etc.
 - Tx
 - Majority - nonop
 - Tube thoracostomy for air/blood
 - Symptomatic - OR
 - Bleeding - transcatheter embolization or poor operative candidate

- Rib fractures
 - Flail chest - 3 or more adjacent ribs are segmentally fractured
 - High rate of resp failure, underlying pulm contusion, infection
 - Tx supportive
 - Plating - still determining role
 - EAST practice management guidelines 2017
 - Meta-analysis with 22 studies, 3 prospective randomized trials
 - Plating - conditional
 - Hemorrhagic
 - Mechanical ventilation
 - Rib fractures do not usually require ortho consultation

Lung Trauma

- Pulmonary contusion
 - Symptoms
 - Clinically silent to severe
 - Evolve over 3 days
 - Resolve at about 1 week
 - May exacerbate hypoxia and shunting
 - Upright positioning
 - IS
 - Analgesia

Lung Trauma

- Indications for operation
 - Massive hemothorax
 - 1500 cc or more open initial tube placement
 - 200-250 cc/hr over 3 consecutive hours
 - Thoracic trauma with persistent hemodynamic instability
 - Monitor chest tubes closely
 - Cessation of bleeding - clotted chest tube, poor positioning
 - Consider ESR
 - Early VATS/thoracotomy

Lung Trauma

- Resection complications
 - Bronchial stump dehiscence
 - Devastating complication
 - Some reinforce bronchial stump with viable tissue
 - Muscle
 - Intercostal muscle flap
 - Diaphragmatic flap
 - Pericardial flap
 - Mediastinal pleura
 - Latissimus
 - Omentum
 - Lat dorsal flap

Lung Trauma

- Damage Control in the Chest
 - Pack and leave chest open
 - Does not interfere with cardiac or pulmonary function
 - Series of 44 patients
 - Mean pH 7.07, ISS 29
 - Mortality 23%
 - All physiologically normal at time of chest closure
 - Average 2-3 days

Heart
Heart

- Epidemiology
 - Difficult to ascertain true quantity due to low volumes

- Mechanism
 - Area most prone to injury: right and left ventricles
 - Be weary of:
 - Coronary arteries
 - Valves
 - Intracardiac fistulas (ventricular septal defects)
 - Foreign bodies
 - Removal if greater than 1 cm in size, contaminated or symptomatic
 - Generally okay to leave intracardiac missiles
 - Right sided can embolize to PA then be removed with cath based technique if large
 - Left - embolize through a PFO or atrial septal defect

- Right sided can embolize to PA then be removed with cath based technique if large

- Rare - embolize through a PFO or atrial septal defect

Heart

- Blunt Injury
 - Replaced term “cardiac contusion”
 - Be wary of:
 - Septal rupture, free wall rupture, coronary artery thrombosis, cardiac failure, dysrhythmia, rupture of chordae tendineae or papillary muscles

- Pericardial tear
 - Right - twisting of heart and prevention of venous return
 - Left - herniation
 - Sudden loss of pulse when the patient is repositioned or placed on a stretcher

Heart

- Blunt Injury
 - Replaced term “cardiac contusion”
 - Be wary of:
 - Septal rupture, free wall rupture, coronary artery thrombosis, cardiac failure, dysrhythmia, rupture of chordae tendineae or papillary muscles

- Pericardial tear
 - Right - twisting of heart and prevention of venous return
 - Left - herniation
 - Sudden loss of pulse when the patient is repositioned or placed on a stretcher

Heart

- Iatrogenic cardiac injury
 - CVC, cardiac cath, endovascular interventions, pericardiocentesis
 - SVC/central perforations - more common with left sided lines

- Be wary of tamponade
 - Pericardial effusion
 - Subxyphoid pericardial window
 - Median sternotomy
 - May be hard to find the injury

Heart

- Electrical Injury
 - Acute myocardial necrosis with or without ventricular failure
 - Myocardial ischemia
 - Dysrhythmias
 - Conduction abnormalities
 - Acute loss with peripheral vasospasm
 - ECG abnormalities

Heart

- Injury Presentation
 - 60-100 ml blood in pericardial sac to induce clinical picture
 - Best signs of pericardial tamponade: narrowing of pulse pressure

- Blunt
 - Dysrhythmias
 - Mc gowen’s sign (right ventricular
 tachycardia), sinus tach
 - Ventricular tach, fibr
 - Supraventricular tachyaryrhythmias

Heart

- Dx
 - Beck’s triad, Kussmaul’s sign - present in only 10% of patients with cardiac tamponade
 - FAST
 - CXR
 - CT scan for trajectory
 - ECG
 - Level 1 rec: FAST
 - Cardiac enzymes
 - Minimal evidence
 - ECHO
 - Often limited by chest wall injury
 - TEE in OR
Heart

- TX
 - Left anterior thoracotomy
 - Decompress right side with blunt dissection across anterior mediastinum
 - Can extend to clamshell
 - Median sternotomy
 - Small stab wounds to the precordium
 - Limits access to posterior mediastinal structures and descending thoracic aorta for cross-clamping
 - Cardiorrhaphy
 - Place sutures deep to the artery

- Results
 - Mortality rate overall for penetrating: 30-50%

Liver

Liver Injury

- Intra/epidemiology
 - Occurs in 5% of all trauma admissions
 - High susceptibility
 - Size of organ
 - Location of organ

- Anatomy
 - Common hepatic
 - 25% of blood flow to liver
 - Hepatic veins
 - Easily torn
 - Must completely mobilize liver to access
 - Retrohepatic vena cava is 8-10 cm in length
 - Be aware of small direct hepatic vessels
Liver Injury

- Anatomy
 - Portal vein
 - 75% of hepatic flow
 - Posterior to hepatic artery and bile ducts
 - Divide pancreas at neck or generous Kocher maneuver
 - Ligaments

Liver Injury

- Management
 - Nonoperative
 - More common recently
 - Unless
 - Clear peritoneal signs
 - Hemodynamically unstable
 - Be wary of hypothermia
 - Congestion
 - Do
 - Hemodynamically unstable
 - Find the body cavity
 - US
 - DPL
 - Dx
 - Hemodynamically stable
 - Find the body cavity
 - US
 - DPL

Liver Injury

- Dx
 - FAST
 - Nig does not preclude injury
 - CT scan
 - Grade
 - Amount of hemoperitoneum
 - Active extravasation
 - Presence of pseudoaneurysm

Liver Injury

- Management
 - HD normal with blunt injury
 - Nonop now standard of care
 - Some say up to four units of blood nonop
 - Hemodynamic over grade
 - Pseudoaneurysm, active extravasation and hemoperitoneum have higher risk of nonop failure
 - Consider angiographic control
 - Complications
 - Abscess
 - CT guided drainage
 - Wide surgical drainage
 - Hemorrhage
 - angioembolization
 - Bile leaks
 - Sphincterotomy
 - Burns
 - Drainage

Liver Injury

- Management
 - HD normal with penetrating injury
 - Nonop if
 - No peritoneal signs
 - Not mentally impaired
 - Complications
 - Bile-pleural fluid or diaphragm injury
 - Operative management
 - Minor
 - Electrocautery
 - Argon beam coagulation
 - Topical hemostatics
 - Omental tongue
 - Major
 - Packing
 - Sleeve resection
 - Finger fracture
 - Percutaneous placement
 - Pringle maneuver
 - Resection
 - Schick cholangiogram
 - EDRA
Liver Injury

- Gallbladder injury?
 - Take it out
 - Also remove if injury to right hepatic artery

Kidney

- Anatomy
 - Malpizz laparotomy
 - Access kidney prior to exploring hematoma
 - Ureter
 - Blood supply
 - Renal artery from above
 - Aorta or common iliac arteries
 - Vesical arteries from below

- Kidney

- Epidemiology
 - Occur in 1-3% of all trauma patients
 - Up to 10% of those with abdominal trauma

- PE
 - Tsp flank, abdomen
 - Hematuria
 - Magnitude correlates poorly with renal injury

- Imaging
 - CT scan now gold standard
 - US for renal perfusion and vascular anatomy
 - Also in OR

- Non-op management
 - Majority managed non-op except
 - Hd instability
 - Ongoing hemorrhage
 - Pulsatile or expanding hematoma upon exploration
 - Avulsion of pedicle
 - Deal with complications
 - Fistula
 - Stent
 - Angi embolization

- Operative management
 - Some say early operative approach to debulk devitalized tissue, etc...
 - Gr 5-8
 - 90-100% require urgent nephrectomy
 - Pedicled injury
 - Repair - absorbable suture for pedicle

Adrenal Glands

- Uncommon
 - Hematoma non-expansile
 - Nonexp
 - Growing hematoma, injury
 - Suture or placement of biologic mesh may prevent total adrenalectomy
- Due to blood supply: rarely devascularized

Adrenal gland

Duodenum/Pancreas
Pancreas and Duodenum

Intro
- Significant challenge
 - Compromised clinical detection of injury
 - Anatomic factors
 - High complication rate
 - Infrequently injured
 - Experience limited
 - Poor outcomes

Pancreas and Duodenum

Pancreas and Duodenum

Predictors of survival
- Age
- Overall injury severity
- Indices of shock
- Severe brain injury

Pancreas and Duodenum

- Not-pancreatic or duodenal injury grade of injury

Pancreas and Duodenum

Penetrating
- Explore
 - Kocher maneuver
 - Body and tail of pancreas
 - Divide gastrocolic ligament
 - Bending in neck of pancreas
 - Divide with stapler without hesitation

Pancreas and Duodenum

Blunt
- Handlebar injuries
 - Difficult
 - Amylase, lipase not indicated

Pancreas and Duodenum

Dx
- Hemodynamically unstable?
 - OR
 - GSW?
 - X-ray chest, abdomen if possible
 - Trajectory
 - Body cavities

Pancreas and Duodenum

Dx
- FAST not helpful for retroperitoneum
- CT
 - Duodenum real
 - Best with oral contrast
 - Repeat if needed
 - May be subtle
 - 80% sensitive
 - Clear laceration?
 - Most recommend exploration
Pancreas and Duodenum

- Evaluate the duct
 - Important determinant of prognosis
 - ERCP
 - Some say MRCP - but controversy
 - If main duct injury - needs exploration
 - Intraop:
 - ERCP
 - Infuse contrast into gallbladder
 - Duodenotomy - high complication rate

Pancreas and Duodenum

- Duodenum
 - Management
 - Grade 1 and 2
 - Almost all hematomas resolve 2-3 weeks
 - Luminal compromise up to 30%:
 - Consider distal feeding tube
 - Intraop only if mass effect and luminal compromise
 - Expectant management:
 - Npo, ngt
 - Repair if needed

Pancreas and Duodenum

- Duodenum
 - Grade 1 and 2
 - Duodenal lacs
 - Primary single layer for small simple
 - Laceration to pancreatic side of duct?
 - Maybe antimesenteric duodenotomy with repair of injury from inside
 - Grade 3
 - Simple
 - Duodenorrhaphy
 - Tension free
 - Duodenoduodenectomy
 - Know where ampulla is
 - Duodenojejunal anastomosis may need separate leak with roux limb
 - Patch graft
 - Pyloric exclusion
 - GJ with oversew pylorus
 - More historical, controversy
 - Many say primary repair enough
 - Consider drains - closed suction

Pancreas and Duodenum

- Duodenum
 - Grade 4/5
 - Above technique
 - Roux-en-y hepaticoj
 - Whipple
 - absolute last resort
 - often done at inter date

Pancreas and Duodenum

- Pancreas
 - Grade 1 and 2
 - More literature in children...
 - Found intraop?
 - Drain
 - Don't attempt repair unless evidence of duct disruption
 - Test drain for amylase - less than serum, remove
Pancreas and Duodenum

- Pancreas
 - Grade 3
 - Minimal duct disruption?
 - Maybe ERCP and stent, otherwise OR
 - Tail injury: resect
 - Grade 4
 - Wide drainage
 - 85-90% of gland resected is okay
 - Whipple frequently done when not warranted
 - Should be staged
 - Grade 5
 - Whipple frequently done when not warranted

- Complications
 - Hemorrhage
 - Pancreatic fistula
 - Duodenal fistula and stricture
 - Abdominal abscess
 - Pseudocyst/pancreatitis
 - Pancreatic insufficiency

- Spleen

- Pancreas
 - Controversial
 - Nonsurgical dx requires mrcp or ercp
 - No OR
 - Longer LOS, higher morbidity, higher pseudocyst formation and longer time to diet

- Pancreas
 - Grade 4
 - Wide drainage
 - 85-90% of gland resected is okay
 - Whipple frequently done when not warranted
 - Should be staged
 - Grade 5
 - Whipple frequently done when not warranted

- Complications
 - Hemorrhage
 - Pancreatic fistula
 - Duodenal fistula and stricture
 - Abdominal abscess
 - Pseudocyst/pancreatitis
 - Pancreatic insufficiency
Spleen

- Anatomy
 - 317 patients imaged
 - Two patterns of splenic arterial anatomy
 - Concentrated pattern
 - Multiple branches less than 2 cm from the splenic hilum
 - Distributed pattern
 - Branching occurred more than 2 cm from the splenic hilum
 - Usually two major branches that proceeded from the bifurcation

- Ligaments
 - Chief ligaments
 - Gastrosplenic
 - Splenorenal
 - Minor ligaments
 - Spenophrenic
 - Splenocolic
 - Presplenec fold
 - Pancreaticosplenic
 - Phrenocolic
 - Pancreatic-colic ligament

Let's just take part of it out....

- Partial splenectomy probably not safe in the setting of trauma secondary to coagulopathy
 - Splenic segmental arteries are NOT END ARTERIES
 - Important implications for surgeons
 - Partial splenectomy
 - Angiographic management

Splenectomy Complications

- Bleeding
- Injury to adjacent structures
 - Colon, diaphragm
- SSI

Splenic Injuries in Children

- OPSI
 - Septicemia/meningitis
 - Usually S. Pneumonia, H. Influenza or N. meningitis
 - Fatal infections usually within the first two years
 - Mortality risk 30%
 - Some implant spleen in omentum
 - Evidence of partial recovery of spleen filtration functions
 - No evidence of help with opsi
 - Overall risk 3.2%
 - Rate similar in children but mortality is higher
 - Lowest risk in splenectomy done for injury

- SSI
Spleen Injuries in Children

- Nonop is preferred approach
- Clinical practice guidelines proposed by the Trauma Committee of the American Pediatric Surgery Association (APSA) for isolated liver and spleen
 - Outcomes in more than 850 patients
 - Compliance in these guidelines: feasible and safe
 - 300 patients, prospective review at two trauma centers
 - Journal of Pediatric Surgery, 2002

- Outcomes in more than 850 patients
- Compliance in these guidelines: feasible and safe
- 300 patients, prospective review at two trauma centers
- Journal of Pediatric Surgery, 2002

- Does contrast blush mandate action?
 - Bird and Coauthors, Journal of Trauma and Acute Care Surgery, 2012
 - 38 patients at rural centers over 13 years
 - Followed APSA - successful 97% non-op management
 - None had a contrast blush on angiography
 - Bansal and coauthors, American Journal of Surgery, 2015
 - Retrospective, 270 pts, single hospital
 - Grade 3-4
 - 47 patients had contrast blush
 - None had angiography/splenectomy

- Smaller arteries
 - Angioembolization carries higher risk?
 - Splenic infarct
 - Splenic abscess
 - Postembolization syndrome
 - Abdominal pain
 - Nausea
 - Vomiting
 - Fever
 - Ileus

- American Journal of Surgery, 2015, Rostas and colleagues
 - LMWH in 528 patients over 5 years
 - Early - within 48 hours or less after injury
 - Intermediate 48-72 hours
 - Late - greater than 72 hours
 - Transfusion needs similar in all groups and no increased risk in early implementation

Spleen Injuries in Children

- Outcomes in more than 850 patients
- Compliance in these guidelines: feasible and safe
- 300 patients, prospective review at two trauma centers
- Journal of Pediatric Surgery, 2002

- Does contrast blush mandate action?
 - Bird and Coauthors, Journal of Trauma and Acute Care Surgery, 2012
 - 38 patients at rural centers over 13 years
 - Followed APSA - successful 97% non-op management
 - None had a contrast blush on angiography
 - Bansal and coauthors, American Journal of Surgery, 2015
 - Retrospective, 270 pts, single hospital
 - Grade 3-4
 - 47 patients had contrast blush
 - None had angiography/splenectomy

- Smaller arteries
 - Angioembolization carries higher risk?
 - Splenic infarct
 - Splenic abscess
 - Postembolization syndrome
 - Abdominal pain
 - Nausea
 - Vomiting
 - Fever
 - Ileus

- American Journal of Surgery, 2015, Rostas and colleagues
 - LMWH in 528 patients over 5 years
 - Early - within 48 hours or less after injury
 - Intermediate 48-72 hours
 - Late - greater than 72 hours
 - Transfusion needs similar in all groups and no increased risk in early implementation

Adults

- Journal of Trauma and Acute Care Surgery, 2012, based on EAST guidelines
 - Systematic observational review 126 studies
 - Level 1 recommendation:
 - Hb instability/peritonitis -> OR
 - Angioemb can be considered if:
 - Grade 3-4
 - Contrast blush
 - Moderate hemoperitoneum
 - Evidence of ongoing bleeding
 - Level 2
 - Contrast blush does not mandate angioembolization
 - Repeat ct imaging may be considered
 - Okay to use VTE prophylaxis

Adults - VTE Prophylaxis

- Traditional “high risk” factors:
 - Older age
 - High grade injuries
 - Contrast blush

- Newer data:
 - No significant improvement in outcomes
 - Exposure to complications
Prospective study, single center
168 patients
- Major complications after angio: 9%
- Nonoperative management: 14%
- Overall decrease in complication rate by 25% in patients who underwent embolization

Nonoperative management should only occur in an environment with 5% failure rate.

3 splenectomy in 73 patients undergoing nonoperative management.

Retrospective, 113 patients, 11 years
- Nonoperative management: 1085 patients
- Immediate operative management: 103 patients
- Successful in 63%

Remainder had evidence of ongoing splenic bleeding.

Level 2 recs:
1. Angio should be considered for:
 a. massive hemorrhage
 b. evolving encapsulated hematoma
 c. evidence of ongoing splenic bleeding
2. Nonoperative management can only occur in an environment that can handle it

Level 3 recs:
1. Contrast blush on CT scan alone is not absolute indication for angio - various angiography patterns can be seen
2. PT, PTT, TEG reading normal

American Surgeon, 2013, Post and colleagues
- Retrospective, 258 patients, 9 years
- Nonoperative management: 14.8% of this group
- Major complications in 14% (splenic infarct, cyst, abscess, etc.)
- Most complications seen in patients who underwent splenic artery embolization

Penetrating Splenic Injuries

Berg and coauthors, Injury, 2014
- Retrospective, 201 patients, 18 years
- Immediate operative management: 83% of patients
- Nonoperative management: 14 patients
- Successful in 84%
- 3 who died

Percutaneous techniques, 2014

Laparoscopy, Endoscopy and Percutaneous techniques, 2014

Piccolo and coauthors, Surgical Laparoscopy, Endoscopy and Percutaneous techniques, 2014
- 113 patients
- Risk of splenic injury with angiography: 1/100,000

- 75 articles, 162 patients, 85% had spleen injury
- More than 75% of the occurrence was in the female with median age 65
- None associated with "difficult" retroperitoneoscopy
- 75 patients underwent on:
 a. NO had splenicartery ligation
 b. Overall mortality: 5%
 c. Abdominal pain within 24 hours

References
8. Berg and colleagues, Injury, 2014
15. Berg and colleagues, Injury, 2014
17. Berg and colleagues, Injury, 2014
Bladder

- Intra or extraperitoneal
 - Extraperitoneal
 - Non-standard
 - 18-20Fr catheter for 10-14 days
 - Follow with cystogram
 - Repeat week Foley
 - Consider operative if:
 - Concomitant vaginal or rectal injury
 - Avulsion of bladder neck
 - Need for pelvic exploration for other surgical indications
 - Retropubic access needed for pelvic fix

- Nonop - standard
 - 18-20Fr catheter for 10-14 days
 - Follow with cystogram
 - Repeat week Foley

- Intrapereitoneal
 - Operative repair
 - Generally large lacerate tear in dome of bladder
 - Suture with a full bladder
 - Debride edges if necessary
 - Two layer heavy absorbable suture
 - Bladder cath
 - 5-10 days
 - Cysto prior to removal, though some do without new