

I have no conflicts or financial interests to disclose.

This presentation and the recommendations provided within are not intended to replace protocols or supersede local medical direction.

False dichotomies:

- ACLS:
 - Good for entry-level providers
 - Protocol-driven yes or no
 - Prevents critical-thinking

What can I actually do to help my patients in cardiac arrest?

Roadmap:

- Traumatic arrest
- Refractory VF/VT
- Thrombolytics
- Toxicological arrest
- Airway management
- Termination guidelines
- Therapeutic hypothermia

Traumatic Arrest:

- Important:
 - Injury 4th leading cause of mortality
 - 1st in children and young adults
- Management is inconsistent
 - No good guidelines
 - Paramedic-preference
 - Majority of large services are not following guidelines available

Traumatic Arrest:

- Survivability studies are mixed:
 1% 7% 20% 50%
- Applicability of these numbers?
 - Prehospital physicians
 - Urban vs. suburban vs. rural
 - Proximity to trauma centers
- Aggressive management?
- Transport?

Case 1:

- 44 y/o male motorcyclist
 - Struck by car and thrown
 - Found unresponsive to pain (GCS 3)
 - Agonal respirations
- Loses pulse as soon as you arrive

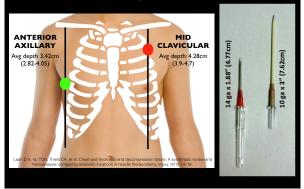
What might actually help???

Epinephrine:

- Medical arrest literature:
 - Equivocal at best
- In trauma:
 - Increased catecholamines already
 - Epi decreases tissue perfusion
 - One study in children \uparrow ROSC
- Recommendation:
 - Probably not helpful

Chest Compressions:

- CPR
 - Improves perfusion
 - Could \downarrow perfusion in tamponade
 - In the NAEMSP/ASCOT guidelines
- Recommendation:
 - May be useful and should be done
 - Should not delay interventions


Pericardiocentesis:

- Pros:
 - Possible temporizing measure
 - Can't kill a dead guy
- Cons:
 - Can't remove clotted blood
 - High risk of iatrogenic injury
- Ultrasound is replacing empiric use
- Recommendation:
 - May be useful in some situations

Pleural Decompression:

- 5-10% of trauma deaths have a pneumothorax
- Easy and possibly life-saving
- Fairly low risk of iatrogenic injury

Needle Decompression:

Needle Decompression:

- Needle Length and Site:
 - 2nd ICS midclavicular:
 - 4.4 cm only 50% successful
 - 5.0 cm only 58% successful
 - 5th ICS midaxillary:
 - 5.0 cm 100% successful
 - 0.6-0.7 cm less tissue

Finger/Open Thoracostomy:

- Needle method not very sensitive
- First described by Deakin et al. 1995
- A few case reports and protocols
- No extensive research/literature
- Massarutti et al. 2006 published a report of 55 pts

Finger/Open Thoracostomy:

• Pros

- Confirmation of correct space
- Allows for revalidation of "lung up"
- Limited supplies/prep/hassle
- Quick to perform?

• Cons

- Fairly invasive for prehospital providers
- Perhaps recurrent pneumo?
- Have to be fairly comfortable for speed

Pleural Decompression:

- Recommendation:
 - Bilateral pleural decompression in all traumatic (peri-) arrests ASAP
 - 5th ICS MAL > 2nd ICS MCL
 - Finger > Large Needle > Normal IV

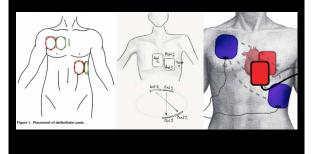
Transport:

- Transport
 - Many risks
 - Some benefit, for rapid intervention
- Recommendation:
 - May be useful for:
 - Penetrating thoracic trauma
 - Witnessed arrest
 - *Proximity of trauma center* (<10-15 min)

Traumatic Arrest:

- Survivability
 - Etiology:
 - Penetrating > Blunt
 - Hypoxia
 - Tension Pneumothorax
 - Cardiac Tamponade
 - Rhythm:
 - Asystole < 1-2.7%
 - PEA < 40bpm very low (similar?)

Traumatic Arrest:

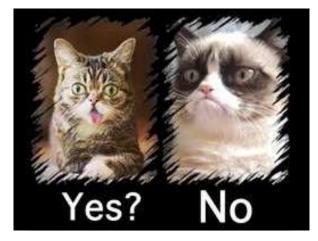

- Algorithm:
 - Immediate transport if indicated and trauma center is close
 - CPR if it doesn't delay other things
 - Needle decompression
 - BLS airway interventions
 - Fluid/blood resuscitation
 - Maybe pericardiocentesis
 - Termination of resuscitation

Case 2:

- 48 y/o healthy female
 - Witnessed cardiac arrest
 - Immediate, high-quality CPR
 - EtCO2 38
- Still in VF despite:
 - 5 shocks at 360 J biphasic
 - 3 mg epinephrine
 - 450 mg amiodarone

Refractory VF/VT:

Double-sequential external defibrillation



DSED:

- Has been around since 1994
 - 5 EP patients with rVF, 7-20 shocks
- Theory:
 - Broader energy vector (95%?)
 - 1st shock decreases threshold
 - Increasing time of energy exposure
 - Increasing dose of energy

Refractory VF/VT:

- Extremely rare (<0.1% of VF arrests)
- Usually RECURRENT, not refractory.
- Causes of Failed Shocks (i.e. why DSED may work):
 - Vector (Optimal positioning of pads)
 - Resistance (Pad adherence, Pressure)
 - Causes (CCL or ECMO?)
 - Constantly changing energy vectors

Problems with DSED:

- Timing:
 - Shocks must be given within <0.01 seconds apart to improve efficacy
 - Human reaction time ~0.2 seconds
 - If 0.01-0.75 sec apart, second shock can actually induce VF
 - Shocks can cancel each other out
- Damage to defibs can result if 2nd shock given at the same time.

DSED:

- Recommendation:
 - Rarely needed, but something to keep in the toolbox (have a plan)
- Fix resistance, placement issues
- Identify refractory vs. recurrent VF
- Any defib used for DSED should be evaluated by the manufacturer

Refractory VF/VT and Meds:

- Catecholamine storm (β1)
 Endogenous or Exogenous
 - Increases myocardial O2 demand
 - Worsens ischemia
 - Lowers VF threshold
 - Worsens post-ROSC myocardial fx

Refractory VF/VT and Meds:

- Animal Studies
 - Propranolol and Esmolol
 - Reduced myocardial oxygen demand
 - Decreased number of defib attempts
 - Improved post-ROSC myocardial fx
 - Reduced arrhythmia reoccurrence
 - Prolonged survival

Esmolol:

- Ideal due to pharmacokinetics
- Bolus dose of 500 mcg/kg
 - ± infusion of 50-100 mcg/kg/min
- Human case series: More likely to:
 - Have temporary ROSC
 - Have sustained ROSC
 - Survive to ICU admission
 - Survive to discharge, neuro intact

Esmolol:

- Recommendation:
 - Use esmolol bolus ± infusion for recurrent and refractory VF/VT
- Transport of refractory VF?
 - Only if other therapies available:
 - ECMO/ECPR, and/or PCI
 - Esmolol, Stellate ganglion block

Case 3:

- 32 year old female
 - Overweight, smokes 1 ppd
 - Rx: Birth control
 - Recent hx of international air travel
- Severe shortness of breath
- Then arrests...

What do you have to offer her?

Intra-Arrest Thrombolytics:

- Not supported for undifferentiated arrests
- TRIOCA:
 - Wide inclusion criteria
 - No difference in ROSC or survival
 - 2.7% vs. 0.4% ICH

Intra-Arrest Thrombolytics:

- Supported for known/suspected PE
 - Up to 13% of OHCA
 - Reduction in death (9% vs. 19%)
 - Good ROSC (96%) and survival (87%)
- May be useful in clear OMI
- CPR not an absolute contraindication

Intra-Arrest Thrombolytics:

- Dose:
 - tPA 50 (to 100) mg bolus ± infusion
- TNKase 0.5 mg/kg or 50 mg bolus
- 15-60 minutes of CPR after
- Anticoagulants also indicated

Intra-Arrest Cardiac Cath:

- Intra-arrest PCI (IAPCI) is indicated if:
 - Suspected or known cardiac cause
 - Quickly implemented
 - Need a protocol and mCPR or ECPR

• ECPR + IAPCI:

- ROSC 88%
- 30-day survival 29%
- Neuro-intact survival 24%

Intra-Arrest Thrombolytics/PCI:

- Recommendation:
 - Provide pre-hospital thrombolysis in suspected massive PE.
 - Consider pre-hospital thrombolysis in OMI with short down-time when access to PCI is delayed or not available.
 - Consider urgent transport for patients with OMI when IAPCI is available.

Case 4:

- 21 year old female
 - History of severe depression
 - Recent emotional distress
 - Near-empty pill bottles next to her:
 - Propranolol, Fluoxetine
- Arrests as you arrive....
 - And stays in arrest....

What do you have to offer her?

Toxicological:

- High-dose Insulin Euglycemic Therapy (HIET)
- Indications:
 - Calcium-channel blocker overdose
 - Possibly beta-blocker and other ODs

HEIT:

• Action:

- \uparrow glucose/lactate uptake by myocardial cells

- ↑ contractility through glucose availability

• Concerns:

- Must match with vasopressors
 - Insulin has no chronotropic effect
 - Insulin may cause vasodilation
- Need to balance euglycemia

HEIT:

- Implementation:
 - 1 unit/kg insulin bolus
 - 0.5 units/kg/hour insulin infusion
 - Titrate up every 15-30 minutes
 - Blood glucose correction:
 - 25 grams/hour dextrose, titrated
 - Monitor BGL q20min for 1 hour
 - Then monitor BGL hourly

Lipid Rescue Therapy:

- Intralipids might:
 - Improve cardiac contractility:
 - Supply fatty acids for metabolism
 - Improve calcium handling
 - Raise tonicity (volume booster?)
 - Provide a "sink" for lipophilic drugs:

Medication	Bupivicaine	Amitriptyline	Bupropion	Verapamil	Propranolol
Partitioning coefficient (logP)	3.9	5.04	2.61	2.31	3.09

Lipid Rescue Therapy:

- 20% Intralipid Solution
 - 1.5 mL/kg bolus
 - May repeat x2
 - 0.25 mL/kg/min infusion
 - May double

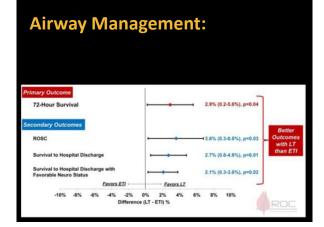
Case 5:

- 65 y/o M arrest:
 - ACLS in-progress
 - OPA in-place
 - BVM going well

"More medics than you can shake a stick at" Should we insert an advanced airway?

Airway Management:

- Benoit 2015
 - 75,000 patient meta-analysis
 - ETI 1.33 OR good neuro outcome

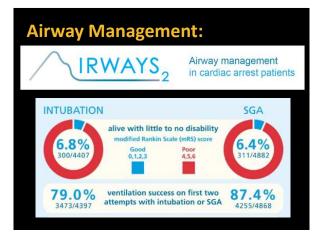

Study	N (ETI)	N (SGA)	OR (95% CI)				
FULL MODEL:							
Kajino 2011	1679	3698	0.71 (0.39-1.30)		H		
McMullan 2014	5591	3110	1.66 (1.15-2.41)		H		
Noda 2007	4	24	5.22 (0.09-299.04)			-	
Tanabe 2013	12992	29640	1.30 (1.06-1.59)		H e -		
Wang 2012	8487	1968	1.40 (1.04-1.89)				
Yanagawa 2010	158	478	1.01 (0.20-5.05)		•		
TOTAL	28911	38918	1.33 (1.09-1.61)		 		
SENSITIVITY AN	IALYSIS N	NODEL:					
Kajino 2011	1679	3698	0.71 (0.39-1.30)				
McMullan 2014	5591	3110	1.66 (1.15-2.41)		H		
Tanabe 2013	12992	29640	1.30 (1.06-1.59)				
Wang 2012	8487	1968	1.40 (1.04-1.89)		H=		
TOTAL	28749	38416	1.33 (1.04-1.69)		 ♦		
				0.1		10	100
				Favors SGA			Favors ETI

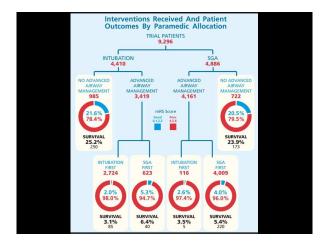
Airway Management:

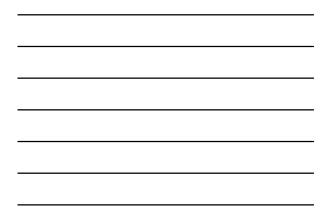
- Hasegawa 2013
 - 357,000 patients (incl. trauma)
 - Good neurological outcome
 - 3.2% BVM
 - 1.1% SGA
 - 1.0% ETI

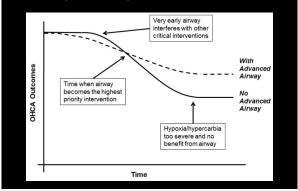
Airway Management:

- Jabre 2018
 - 2,000 patients randomized
 - Good neurological outcomes:
 - 4.3% BVM
 - 4.2% ETI
 - More failures and complications in BVM group




Airway Management:


Characteristic	LT N=1,505	ETI N=1,499
Compliance with Assigned Airway	95.5%	90.7%
Airway Insertion Success		
Initial airway	89.9%	51.3%
Overall airway	94.2%	91.5%
Elapsed Times, mean minutes (SD)		
Arrival to airway start	11.0 (6.5)	13.6 (6.8)
Arrival to airway success (or abandon)	11.7 (6.4)	14.4 (6.8)
Emergency Department Intubation	64.4%	33.1%





Airway Management:

- BVM>ETI>King ? iGel ?
- Possible reasons:
 - Study design/confounders
 - Interruptions in CPR
 - Distractions from CPR
 - SGA compression of carotids/IJ
 - Hyperventilation

Airway Management:

Case 6:

- Continuing our 65 y/o M arrest:
 - ACLS on-scene for 25 minutes
 - Fast PEA persists
 - EtCO2 14
 - Some slight motion on ultrasound

Should we terminate resuscitation?

Termination of Resuscitation:

- Multifactorial
 - Prognostic factors
 - Family concerns
 - Available resources local facilities
 - Do they do more than ACLS?
 - IAPCI, ECPR, Esmolol, etc.

Termination of Resuscitation:

- EtCO2 < 10mmHg is pretty good
 - Small studies
 - Initial vs. initial, average/5min, final
 - Some survivors
- No cardiac motion on sonogram is pretty good
 - Small studies
 - Some survivors

Termination of Resuscitation:

- 100% specificity and sensitivity:
 - Not witnessed by EMS
 - Non-shockable initial rhythm
 - No ROSC prior to 3rd epi

Case 7:

- Continuing our 65 y/o M arrest:
 - ROSC achieved
 - Vitals miraculously stable

Therapeutic Hypothermia:

- Overall post-ROSC TH:
 - Likely some neurological benefit
 - Likely no difference 32-34-36 deg C
- Pre-hospital TH:
 - No proven improvement in:
 - Survival to admission
 - Survival to discharge
 - Good neurological recovery

Therapeutic Hypothermia:

- Pre-hospital TH:
 - Complications:
 - More recurrent arrest
 - Decreases admission pH
 - Chilled IVF \rightarrow pulmonary edema
- Recommendation:
 - Do not provide pre-hospital TH.

